Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Med ; 21(4): e1004263, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38573873

ABSTRACT

BACKGROUND: Acute neurological manifestation is a common complication of acute Coronavirus Disease 2019 (COVID-19) disease. This retrospective cohort study investigated the 3-year outcomes of patients with and without significant neurological manifestations during initial COVID-19 hospitalization. METHODS AND FINDINGS: Patients hospitalized for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection between 03/01/2020 and 4/16/2020 in the Montefiore Health System in the Bronx, an epicenter of the early pandemic, were included. Follow-up data was captured up to 01/23/2023 (3 years post-COVID-19). This cohort consisted of 414 patients with COVID-19 with significant neurological manifestations and 1,199 propensity-matched patients (for age and COVID-19 severity score) with COVID-19 without neurological manifestations. Neurological involvement during the acute phase included acute stroke, new or recrudescent seizures, anatomic brain lesions, presence of altered mentation with evidence for impaired cognition or arousal, and neuro-COVID-19 complex (headache, anosmia, ageusia, chemesthesis, vertigo, presyncope, paresthesias, cranial nerve abnormalities, ataxia, dysautonomia, and skeletal muscle injury with normal orientation and arousal signs). There were no significant group differences in female sex composition (44.93% versus 48.21%, p = 0.249), ICU and IMV status, white, not Hispanic (6.52% versus 7.84%, p = 0.380), and Hispanic (33.57% versus 38.20%, p = 0.093), except black non-Hispanic (42.51% versus 36.03%, p = 0.019). Primary outcomes were mortality, stroke, heart attack, major adverse cardiovascular events (MACE), reinfection, and hospital readmission post-discharge. Secondary outcomes were neuroimaging findings (hemorrhage, active and prior stroke, mass effect, microhemorrhages, white matter changes, microvascular disease (MVD), and volume loss). More patients in the neurological cohort were discharged to acute rehabilitation (10.39% versus 3.34%, p < 0.001) or skilled nursing facilities (35.75% versus 25.35%, p < 0.001) and fewer to home (50.24% versus 66.64%, p < 0.001) than matched controls. Incidence of readmission for any reason (65.70% versus 60.72%, p = 0.036), stroke (6.28% versus 2.34%, p < 0.001), and MACE (20.53% versus 16.51%, p = 0.032) was higher in the neurological cohort post-discharge. Per Kaplan-Meier univariate survival curve analysis, such patients in the neurological cohort were more likely to die post-discharge compared to controls (hazard ratio: 2.346, (95% confidence interval (CI) [1.586, 3.470]; p < 0.001)). Across both cohorts, the major causes of death post-discharge were heart disease (13.79% neurological, 15.38% control), sepsis (8.63%, 17.58%), influenza and pneumonia (13.79%, 9.89%), COVID-19 (10.34%, 7.69%), and acute respiratory distress syndrome (ARDS) (10.34%, 6.59%). Factors associated with mortality after leaving the hospital involved the neurological cohort (odds ratio (OR): 1.802 (95% CI [1.237, 2.608]; p = 0.002)), discharge disposition (OR: 1.508 (95% CI [1.276, 1.775]; p < 0.001)), congestive heart failure (OR: 2.281 (95% CI [1.429, 3.593]; p < 0.001)), higher COVID-19 severity score (OR: 1.177 (95% CI [1.062, 1.304]; p = 0.002)), and older age (OR: 1.027 (95% CI [1.010, 1.044]; p = 0.002)). There were no group differences in radiological findings, except that the neurological cohort showed significantly more age-adjusted brain volume loss (p = 0.045) than controls. The study's patient cohort was limited to patients infected with COVID-19 during the first wave of the pandemic, when hospitals were overburdened, vaccines were not yet available, and treatments were limited. Patient profiles might differ when interrogating subsequent waves. CONCLUSIONS: Patients with COVID-19 with neurological manifestations had worse long-term outcomes compared to matched controls. These findings raise awareness and the need for closer monitoring and timely interventions for patients with COVID-19 with neurological manifestations, as their disease course involving initial neurological manifestations is associated with enhanced morbidity and mortality.


Subject(s)
COVID-19 , Stroke , Humans , Female , COVID-19/complications , COVID-19/epidemiology , COVID-19/therapy , SARS-CoV-2 , Retrospective Studies , Follow-Up Studies , Aftercare , Patient Discharge , Seizures , Stroke/epidemiology
2.
Diabetes Obes Metab ; 25(9): 2482-2494, 2023 09.
Article in English | MEDLINE | ID: mdl-37254311

ABSTRACT

AIMS: This study characterized incidence, patient profiles, risk factors and outcomes of in-hospital diabetic ketoacidosis (DKA) in patients with COVID-19 compared with influenza and pre-pandemic data. METHODS: This study consisted of 13 383 hospitalized patients with COVID-19 (March 2020-July 2022), 19 165 hospitalized patients with influenza (January 2018-July 2022) and 35 000 randomly sampled hospitalized pre-pandemic patients (January 2017-December 2019) in Montefiore Health System, Bronx, NY, USA. Primary outcomes were incidence of in-hospital DKA, in-hospital mortality, and insulin use at 3 and 6 months post-infection. Risk factors for developing DKA were identified. RESULTS: The overall incidence of DKA in patients with COVID-19 and influenza, and pre-pandemic were 2.1%, 1.4% and 0.5%, respectively (p < .05 pairwise). Patients with COVID-19 with DKA had worse acute outcomes (p < .05) and higher incidence of new insulin treatment 3 and 6 months post-infection compared with patients with influenza with DKA (p < .05). The incidence of DKA in patients with COVID-19 was highest among patients with type 1 diabetes (12.8%), followed by patients with insulin-dependent type 2 diabetes (T2D; 5.2%), non-insulin dependent T2D (2.3%) and, lastly, patients without T2D (1.3%). Patients with COVID-19 with DKA had worse disease severity and higher mortality [odds ratio = 6.178 (4.428-8.590), p < .0001] compared with those without DKA. Type 1 diabetes, steroid therapy for COVID-19, COVID-19 status, black race and male gender were associated with increased risk of DKA. CONCLUSIONS: The incidence of DKA was higher in COVID-19 cohort compared to the influenza and pre-pandemic cohort. Patients with COVID-19 with DKA had worse outcomes compared with those without. Many COVID-19 survivors who developed DKA during hospitalization became insulin dependent. Identification of risk factors for DKA and new insulin-dependency could enable careful monitoring and timely intervention.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Diabetic Ketoacidosis , Influenza, Human , Humans , Male , Diabetic Ketoacidosis/epidemiology , Diabetic Ketoacidosis/therapy , Diabetic Ketoacidosis/etiology , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Incidence , Pandemics , Influenza, Human/complications , Influenza, Human/epidemiology , Retrospective Studies , COVID-19/complications , COVID-19/epidemiology , Risk Factors , Insulin/therapeutic use , Insulin, Regular, Human
3.
Diagnostics (Basel) ; 13(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36611411

ABSTRACT

Background: Early in the pandemic, we established COVID-19 Recovery and Engagement (CORE) Clinics in the Bronx and implemented a detailed evaluation protocol to assess physical, emotional, and cognitive function, pulmonary function tests, and imaging for COVID-19 survivors. Here, we report our findings up to five months post-acute COVID-19. Methods: Main outcomes and measures included pulmonary function tests, imaging tests, and a battery of symptom, physical, emotional, and cognitive assessments 5 months post-acute COVID-19. Findings: Dyspnea, fatigue, decreased exercise tolerance, brain fog, and shortness of breath were the most common symptoms but there were generally no significant differences between hospitalized and non-hospitalized cohorts (p > 0.05). Many patients had abnormal physical, emotional, and cognitive scores, but most functioned independently; there were no significant differences between hospitalized and non-hospitalized cohorts (p > 0.05). Six-minute walk tests, lung ultrasound, and diaphragm excursion were abnormal but only in the hospitalized cohort. Pulmonary function tests showed moderately restrictive pulmonary function only in the hospitalized cohort but no obstructive pulmonary function. Newly detected major neurological events, microvascular disease, atrophy, and white-matter changes were rare, but lung opacity and fibrosis-like findings were common after acute COVID-19. Interpretation: Many COVID-19 survivors experienced moderately restrictive pulmonary function, and significant symptoms across the physical, emotional, and cognitive health domains. Newly detected brain imaging abnormalities were rare, but lung imaging abnormalities were common. This study provides insights into post-acute sequelae following SARS-CoV-2 infection in neurological and pulmonary systems which may be used to support at-risk patients and develop effective screening methods and interventions.

SELECTION OF CITATIONS
SEARCH DETAIL
...